Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Erol Asker ${ }^{\text {a }}$ and John Masnovi ${ }^{\text {b }}$
${ }^{\text {a }}$ Balıkesir Üniversitesi, Necatibey Ëgitim Fakültesi, 10100 Balikesir, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA

Correspondence e-mail: asker@balikesir.edu.tr

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.060$
$w R$ factor $=0.135$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
9,9'-Diethyl-3,3'-di-9H-carbazolyl

In the title compound, $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2}$, the carbazole ring systems are essentially planar to within 0.076 (3) \AA. The dihedral angle between the planes of the ring systems is $40.38(4)^{\circ}$. The contribution of intermolecular $\pi-\pi$ interactions to the molecular stacking is observed.

Comment

Dicarbazolylalkanes, as the dimeric model compounds of poly- N-vinylcarbazole (PVK) and poly-3-vinylcarbazole (P3VK), have attracted some interest in studies dealing with photophysical properties of the corresponding polymers (Schildcrout et al., 1991; Haderski et al., 2000; Tani et al., 2001). Crystal structures of some of the dicarbazolyl model compounds have already been reported (Baker et al., 1991; Asker \& Masnovi, 2005). In this paper, we report the structure of 9,9'-diethyl-3, 3^{\prime}-dicarbazolyl, (I), which was synthesized according to a literature procedure via oxidation of 9-ethylcarbazole by ferric chloride (Sadaki et al., 1995).

(I)

The 13 atoms of each carbazole ring in (I) (Fig. 1) are essentially coplanar to within 0.076 (3) \AA. Bond distances and angles in the carbazole rings (Table I) are in agreement with each other, as well as with those of related compounds reported in the literature (Baker et al., 1991; Asker \& Masnovi, 2005). The torsion angles $\mathrm{C} 9 a-\mathrm{N}-\mathrm{C} 10-\mathrm{C} 11$ [93.1 (4) ${ }^{\circ}$] and $\mathrm{C} 9 a^{\prime}-\mathrm{N}^{\prime}-\mathrm{C}_{1} 0^{\prime}-\mathrm{C} 11^{\prime}\left[82.3(4)^{\circ}\right.$] show how the N-ethyl substituents are oriented out of the carbazole ring system planes. Examination of the packing (Fig. 2) reveals the existence of $\pi-\pi$ stacking interactions in the structure of (I), where the two carbazole groups of one molecule associate centrosymmetrically with one carbazole group of each of two adjacent molecules in such an orientation that their dipoles and ethyl groups point in opposite directions.

Experimental

The title compound, (I), was prepared according to the literature procedure via oxidation of 9 -ethylcarbazole by ferric chloride (Sadaki et al., 1995). To a solution of 9 -ethylcarbazole ($5.0 \mathrm{~g}, 0.026$

Received 2 February 2006 Accepted 16 February 2006
mole) in dichloromethane (60 ml) in an oven-dried three-necked 250 ml flask, $\mathrm{FeCl}_{3}(5.0 \mathrm{~g}, 0.031 \mathrm{~mol})$ was added portionwise, with stirring, in an ice bath. The mixture was stirred for an additional hour at room temperature, during which time the solution became dark green. After 1 h , the reaction medium was carefully neutralized by dropwise addition of aqueous NaOH solution. After extraction of the mixture with additional dichloromethane (50 ml) and washing three times with water, the solvent was removed and the resulting solid was air-dried. Column chromatography of the crude product over basic alumina (80-200 mesh, activity III), using dichloromethane/hexane as eluant, yielded 2.2 g (43.7%) of colorless crystals [m.p. 464-465 K; literature $466-467 \mathrm{~K}$ (Chen et al., 2000)]. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 8.44(d, 1.64 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(d, 7.86 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(d$ of $d, 8.59$ and $1.83 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.42(m, 6 \mathrm{H}), 7.28(t, 6.76 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(q$, $7.31 \mathrm{~Hz}, 4 \mathrm{H}), 1.49(t, 7.31 \mathrm{~Hz}, 6 \mathrm{H})$.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2}$
$M_{r}=388.49$
Tetragonal, $I 4_{1} / a$
$a=22.6201(8) \AA$
$c=16.3918(12) \AA$
$V=8387.2(7) \AA^{3}$
$Z=16$
$D_{x}=1.231 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction: none
3689 measured reflections
3689 independent reflections
1481 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation

Cell parameters from 25 reflections
$\theta=5.7-18.4^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.51 \times 0.43 \times 0.42 \mathrm{~mm}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 26 \\
& k=0 \rightarrow 26 \\
& l=0 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \quad \text { intensity decay: } 1.3 \%
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.135$
$S=0.86$
3689 reflections
271 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.2 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\max }=0.15 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 4 a-\mathrm{C} 4 b$	$1.444(4)$	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$	$1.378(4)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.400(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.378(4)$
$\mathrm{C} 3-\mathrm{C} 3^{\prime}$	$1.485(4)$	$\mathrm{C} 4 a^{\prime}-\mathrm{C} 4 b^{\prime}$	$1.446(4)$
$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	$1.399(4)$		
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.0(3)$	$\mathrm{C} 1-\mathrm{C} 9 a-\mathrm{C} 4 a$	$122.1(3)$
$\mathrm{N}{ }^{\prime}-\mathrm{C} 9 a^{\prime}-\mathrm{C} 4 a^{\prime}$	$109.4(3)$	$\mathrm{N}-\mathrm{C} 9 a-\mathrm{C} 4 a$	$109.2(3)$
$\mathrm{C} 1^{\prime}-\mathrm{C} 9 a^{\prime}-\mathrm{C} 4 a^{\prime}$	$120.6(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 a$	$117.4(4)$
$\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	$117.2(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.0(4)$
$\mathrm{N} \mathbf{N}^{\prime}-\mathrm{C} 8 a^{\prime}-\mathrm{C} 4 b^{\prime}$	$108.7(3)$	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	$123.4(3)$
$\mathrm{N}-\mathrm{C} 8 a-\mathrm{C} 4 b$	$108.7(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.9(3)$
$\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 9 a^{\prime}$	$117.8(3)$	$\mathrm{C} 7^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 5^{\prime}$	$120.3(4)$
$\mathrm{C} 9 a^{\prime}-\mathrm{N}^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}$	$82.3(4)$	$\mathrm{C} 9 a-\mathrm{N}-\mathrm{C} 10-\mathrm{C} 11$	$93.1(4)$

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.93,0.96$ and $0.97 \AA$ for aromatic, methyl and methylene H atoms, respectively, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ of the parent atom for the methyl groups and $1.2 U_{\text {eq }}(\mathrm{C})$ for the rest.

Figure 1
ORTEP-3 drawing (Farrugia, 1997) of (I) with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.

Figure 2
The two-dimensional layer structure of (I), viewed down the b axis. H atoms have been omitted for clarity.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1993); cell refinement: CAD-4-PC Software; data reduction: DATRD2 in NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors thank the Turkish Ministry of Education and the CSU College of Graduate Studies for their support of this work.

References

Asker, E. \& Masnovi, J. (2005). Acta Cryst. E61, o2781-o2783.
Baker, R. J., Chen, Z., Krafcik, R. B. \& Masnovi, J. (1991). Acta Cryst. C47, 2167-2170.
Chen, Y., Yamamura, T. \& Iganashi, K. (2000). J. Polym. Sci. Part A Polym. Chem. 38, 90-100.
Enraf-Nonius (1993). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

organic papers

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gabe, E. J., Le Page, Y., Charland,. J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Haderski, G. J., Chen, Z., Krafcik, R. B., Masnovi, J., Baker, R. J. \& Towns, R. L. R. (2000). J. Phys. Chem. B, 104, 2242-2250.

Sadaki, S., Kham, K. \& Chevort, C. (1995). J. Chim. Phys. 92, 819-822.

Schildcrout, S. M., Krafcik, R. B. \& Masnovi J. (1991). J. Org. Chem. 56, 7026 7034.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. \& Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

